Non-native Dreissena associated with increased native benthic community abundance with greater lake depth

Author: Bayba S., Burlakova L.E., Karatayev A.Y., and Warren II R.J.
Year: 2022
Digital Object Identifier: https://doi.org/10.1016/j.jglr.2022.03.003

Type: Journal Article
Topic: Biology, Ecosystem Impacts, Monitoring/ Sampling

 

 

Although the typical interaction between non-native invasive species and native species is considered to be negative, in some cases, non-native species may facilitate native species. Zebra and quagga mussels (Dreissena spp.) are aggressive invaders in freshwater systems, and they can alter energy flow by diverting nutrients from pelagic to benthic food-webs. In the last two decades, quagga mussels have largely replaced zebra mussels in shallow regions of the Laurentian Great Lakes and colonized deeper waters previously devoid of all dreissenids. Here, we aim to characterize potential positive effects of dreissenids in relation to depth on the benthic community in lakes Michigan and Huron. For this study, we used benthic survey data collected from Lake Michigan in 2015 and Lake Huron in 2017 and annual U.S. EPA Great Lakes National Program Office Long-term Biology Monitoring Program data for both lakes from 1998 to 2019. Benthic species richness and abundance (excluding dreissenids) in both lakes were almost three-fold higher in the nearshore (<70 m) compared to offshore (>70 m) communities. We found that, even though abundance of benthic invertebrates decreased with increased depth, total benthos density and biomass were higher in the presence than in the absence of quagga mussels in both lakes. Moreover, increased quagga mussel density and biomass with depth offset the lower benthos density and biomass at deeper depths, and samples with dreissenids had high densities of oligochaetes in both nearshore and offshore communities. These patterns are consistent with facilitative effects of quagga mussels on both shallow and deep-water benthic communities.

Open resource